Search results for "Quaternionic projective space"
showing 10 items of 13 documents
Correction to ?partial spreads in finite projective spaces and partial designs?
1976
A note on conjugation involutions on homotopy complex projective spaces
1986
On Baer subspaces of finite projective spaces
1983
Partial spreads in finite projective spaces and partial designs
1975
A partial t-spread of a projective space P is a collection 5 p of t-dimensional subspaces of P of the same order with the property that any point of P is contained in at most one element of 50. A partial t-spread 5 p of P is said to be a t-spread if each point of P is contained in an element of 5P; a partial t-spread which is not a spread will be called strictly partial. Partial t-spreads are frequently used for constructions of affine planes, nets, and Sperner spaces (see for instance Bruck and Bose [5], Barlotti and Cofman [2]). The extension of nets to affine planes is related to the following problem: When can a partial t-spread 5 ~ of a projective space P be embedded into a larger part…
On t-covers in finite projective spaces
1979
A t-cover of the finite projective space PG(d,q) is a setS of t-dimensional subspaces such that any point of PG(d,q) is contained in at least one element ofS. In Theorem 1 a lower bound for the cardinality of a t-coverS in PG(d,q) is obtained and in Theorem 2 it is shown that this bound is best possible for all positive integers t,d and for any prime-power q.
Projective spaces on partially ordered sets and Desargues' postulate
1991
We introduce a generalized concept of projective and Desarguean space where points (and lines) may be of different size. Every unitary module yields an example when we take the 1-and 2-generated submodules as points and lines. In this paper we develop a method of constructing a wide range of projective and Desarguean spaces by means of lattices.
On Barbilian spaces in projective lattice geometries
1992
We introduce the notion of a Barbilian space of a projective lattice geometry in order to investigate the relationship between lattice-geometric properties and the properties of point-hyperplane structures associated with. We obtain a characterization of those projective lattice geometries, the Barbilian space of which is a Veldkamp space.
Generically split projective homogeneous varieties. II
2012
AbstractThis article gives a complete classification of generically split projective homogeneous varieties. This project was begun in our previous article [PS10], but here we remove all restrictions on the characteristic of the base field, give a new uniform proof that works in all cases and in particular includes the case PGO2n+ which was missing in [PS10].
Maps to Projective Space
2000
One of the main goals of algebraic geometry is to understand the geometry of smooth projective varieties. For instance, given a smooth projective surface X, we can ask a host of questions whose answers might help illuminate its geometry. What kinds of curves does the surface contain? Is it covered by rational curves, that is, curves birationally equivalent to ℙ1? If not, how many rational curves does it contain, and how do they intersect each other? Or is it more natural to think of the surface as a family of elliptic curves (genus-1 Riemann surfaces) or as some other family? Is the surface isomorphic to ℙ2 or some other familiar variety on a dense set? What other surfaces are birationally …